Method for registration of 3D shapes without overlap for known 3D priors

Abstract

In 3D registration of point clouds, the goal is to find an optimal transformation that aligns the input shapes, provided that they have some overlap. Existing methods suffer from performance degradation when the overlapping ratio between the neighbouring point clouds is small. So far, there is no existing method that can be adopted for aligning shapes with no overlap. In this letter, to the best of knowledge, the first method for the registration of 3D shapes without overlap, assuming that the shapes correspond to partial views of a known semi-rigid 3D prior is presented. The method is validated and compared to existing methods on FAUST, which is a known dataset used for human body reconstruction. Experimental results show that this approach can effectively align shapes without overlap. Compared to existing state-of-the-art methods, this approach avoids iterative optimization and is robust to outliers and inherent inaccuracies induced by an initial rough alignment of the shapes..

Publication
Electronics Letters
Pengpeng Hu
Pengpeng Hu
Senior Lecturer (Associate Professor)

Pengpeng Hu is currently a Senior Lecturer (Associate Professor) with The University of Manchester. His research interests include biometrics, geometric deep learning, 3D human body reconstruction, point cloud processing, and vision-based measurement. He serves as an Associate Editor for IEEE Transactions on Neural Networks and Learning Systems, IEEE Transactions on Automation Science and Engineering, and Engineering and Mathematics in Medical and Life Sciences, as well as an Academic Editor for PLOS ONE and a member of the editorial board for Scientific Reports. He is also the Programme Chair for the 25th UK Workshop on Computational Intelligence (UKCI 2026) and an Area Chair for the 35th British Machine Vision Conference (BMVC 2024). He is the recipient of the Emerald Literati Award for an outstanding paper in 2019.