Anet: A deep neural network for automatic 3d anthropometric measurement extraction

Abstract

3D Anthropometric measurement extraction is of paramount importance for several applications such as clothing design, online garment shopping, and medical diagnosis, to name a few. State-of-the-art 3D anthropometric measurement extraction methods estimate the measurements either through some landmarks found on the input scan or by fitting a template to the input scan using optimization-based techniques. Finding landmarks is very sensitive to noise and missing data. Template-based methods address this problem, but the employed optimization-based template fitting algorithms are computationally very complex and time-consuming. To address the limitations of existing methods, we propose a deep neural network architecture which fits a template to the input scan and outputs the reconstructed body as well as the corresponding measurements. Unlike existing template-based anthropocentric measurement extraction methods, the proposed approach does not need to transfer and refine the measurements from the template to the deformed template, thereby being faster and more accurate. A novel loss function, especially developed for 3D anthropometric measurement extraction is introduced. Additionally, two large datasets of complete and partial front-facing scans are proposed and used in training. This results in two models, dubbed Anet-complete and Anet-partial , which extract the body measurements from complete and partial front-facing scans, respectively. Experimental results on synthesized data as well as on real 3D scans captured by a photogrammetry-based scanner, an Azure Kinect sensor, and the very recent TrueDepth camera system demonstrate that the proposed approach systematically outperforms the state-of-the-art methods in terms of accuracy and robustness.

Publication
IEEE Transactions on Multimedia
Pengpeng Hu
Pengpeng Hu
Senior Lecturer (Associate Professor)

Pengpeng Hu is currently a Senior Lecturer (Associate Professor) with The University of Manchester. His research interests include biometrics, geometric deep learning, 3D human body reconstruction, point cloud processing, and vision-based measurement. He serves as an Associate Editor for IEEE Transactions on Neural Networks and Learning Systems, IEEE Transactions on Automation Science and Engineering, and Engineering and Mathematics in Medical and Life Sciences, as well as an Academic Editor for PLOS ONE and a member of the editorial board for Scientific Reports. He is also the Programme Chair for the 25th UK Workshop on Computational Intelligence (UKCI 2026) and an Area Chair for the 35th British Machine Vision Conference (BMVC 2024). He is the recipient of the Emerald Literati Award for an outstanding paper in 2019.