Knot‐Patterned Treble‐Weaving Smart Electronic Textiles With Advanced Thermal and Moisture Regulation for Seamless Motion Monitoring

Abstract

Smart e-textiles have shown unique advantages in mediating this interactions with the world. Despite substantial progress, the practical application of e-textiles in wearable technologies remains limited by challenging tasks of integrating both optimal electrical performance and thermal-moisture comfort into a single fabric, particularly at industrial scales. Herein, leveraging a meta-textile structural design, a smart treble-weaving electronic textile (TWET) that combines highly sensitive sensing capabilities with radiative cooling is developed and enhanced sweat management through meta-yarn junction blocks forming hierarchical fabric architectures. Unlike conventional layered fabrics by simply compositing different functional layers, the TWET fabric integrates multimodal sensing, optical and moisture management into an all-in-one construction and leverages its interlacing structures as conduits for heat and moisture transmission, which contributes to outstanding thermal-moisture comfort. Moreover, it is demonstrated that the TWET performs robust monitoring and perception of human motion signals against heat stress. It is also shown that frequency-domain signals resulting from Fourier transformation can interpret and distinguish temporal-spatial features of regulating walking and stepping in place. This meta-textile hierarchical-assembly concept enables integrated thermal and moisture management in next-generation e-textiles, offering great potential for scalable production and multifunctionality through the precise engineering of meta-structures.

Publication
Advanced Functional Materials
Pengpeng Hu
Pengpeng Hu
Senior Lecturer (Associate Professor)

Pengpeng Hu is currently a Senior Lecturer (Associate Professor) with The University of Manchester. His research interests include biometrics, geometric deep learning, 3D human body reconstruction, point cloud processing, and vision-based measurement. He serves as an Associate Editor for IEEE Transactions on Neural Networks and Learning Systems, IEEE Transactions on Automation Science and Engineering, and Engineering and Mathematics in Medical and Life Sciences, as well as an Academic Editor for PLOS ONE and a member of the editorial board for Scientific Reports. He is also the Programme Chair for the 25th UK Workshop on Computational Intelligence (UKCI 2026) and an Area Chair for the 35th British Machine Vision Conference (BMVC 2024). He is the recipient of the Emerald Literati Award for an outstanding paper in 2019.