Industrially Scalable Textile Sensing Interfaces for Extended Artificial Tactile and Human Motion Monitoring without Compromising Comfort

Abstract

Smart wearables with the capability for continuous monitoring, perceiving, and understanding human tactile and motion signals, while ensuring comfort, are highly sought after for intelligent healthcare and smart life systems. However, concurrently achieving high-performance tactile sensing, long-lasting wearing comfort, and industrialized fabrication by a low-cost strategy remains a great challenge. This is primarily due to critical research gaps in novel textile structure design for seamless integration with sensing elements. Here, an all-in-one biaxial insertion knit architecture is reported to topologically integrate sensing units within double-knit loops for the fabrication of a large-scale tactile sensing textile by using low-cost industrial manufacturing routes. High sensitivity, stability, and low hysteresis of arrayed sensing units are achieved through engineering of fractal structures of hierarchically patterned piezoresistive yarns via blistering and twisting processing. The as-prepared tactile sensing textiles show desirable sensing performance and robust mechanical property, while ensuring excellent conformability, tailorability, breathability (288 mm s–1), and moisture permeability (3591 g m–2 per day) for minimizing the effect on wearing comfort. The multifunctional applications of tactile sensing textiles are demonstrated in continuously monitoring human motions, tactile interactions with the environment, and recognizing biometric gait. Moreover, we also demonstrate that machine learning-assisted sensing textiles can accurately predict body postures, which holds great promise in advancing the development of personalized healthcare robotics, prosthetics, and intelligent interaction devices.

Publication
ACS Applied Materials & Interfaces
Pengpeng Hu
Pengpeng Hu
Senior Lecturer (Associate Professor)

Pengpeng Hu is currently a Senior Lecturer (Associate Professor) with The University of Manchester. His research interests include biometrics, geometric deep learning, 3D human body reconstruction, point cloud processing, and vision-based measurement. He serves as an Associate Editor for IEEE Transactions on Neural Networks and Learning Systems, IEEE Transactions on Automation Science and Engineering, and Engineering and Mathematics in Medical and Life Sciences, as well as an Academic Editor for PLOS ONE and a member of the editorial board for Scientific Reports. He is also the Programme Chair for the 25th UK Workshop on Computational Intelligence (UKCI 2026) and an Area Chair for the 35th British Machine Vision Conference (BMVC 2024). He is the recipient of the Emerald Literati Award for an outstanding paper in 2019.