A generic method of wearable items virtual try-on

Abstract

Virtual try-on synthesizes garments for the target bodies in 2D/3D domains. Even though existing virtual try-on methods focus on redressing garments, the virtual try-on hair, shoes and wearable accessories are still under-reached. In this paper, we present the first general method for virtual try-ons that is fully automatic and suitable for many items including garments, hair, shoes, watches, necklaces, hats, and so on. Starting with the pre-defined wearable items on a reference human body model, an automatic method is proposed to deform the reference body mesh to fit a target body for obtaining dense triangle correspondences. Then, an improved fit metric is used to represent the interaction between wearable items and the body. For the next step, with the help of triangle correspondences and the fit metric, the wearable items can be fast and efficiently inferred by the shape and posture of the targeted body. Extensive experimental results show that, besides automation and efficiency, the proposed method can be easily extended to implement the dynamic try-on by applying rigging and importing motion capture data, being able to handle both tight and loose garments, and even multi-layer clothing.

Publication
Textile Research Journal
Pengpeng Hu
Pengpeng Hu
Assistant Professor

Pengpeng Hu is currently an Assistant Professor with the Center for Computational Science and Mathematical Modeling, Coventry University, Coventry, U.K. He was a Senior Researcher with the Department of Electronics and Informatics, Vrije Universiteit Brussel (VUB), Brussels, Belgium. In 2016, he was a Visiting Scholar with the School of Informatics, Edinburgh University, Edinburgh, U.K. In 2017, he was a Post-Doctoral Fellow with the Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, U.K. Since 2018, he has been with VUB. His current research interests include biometrics, geometric deep learning, 3-D human body reconstruction, point cloud processing, and measurement.